
Week 9

9.1 Homomorphisms
Definition. Let R and R′ be rings. A ring homomorphism from R to R′ is a map

φ : R→ R′ with the following properties:

1. φ(1R) = 1R′ ;

2. φ(a+ b) = φ(a) + φ(b), for all a, b ∈ R;

3. φ(a · b) = φ(a) · φ(b), for all a, b ∈ R.

Note that if φ : R→ R′ is a homomorphism, then:

•
φ(0) = φ(0 + 0) = φ(0) + φ(0),

which implies that φ(0) = 0.

• For all a ∈ R, 0 = φ(0) = φ(−a+ a) = φ(−a) + φ(a), which implies that

φ(−a) = −φ(a).
• If u is a unit in R, then 1 = φ(u ·u−1) = φ(u)φ(u−1), and 1 = φ(u−1 ·u) =
φ(u−1)φ(u); which implies that φ(u) is a unit, with φ(u)−1 = φ(u−1).

Example 9.1.1. The map φ : Z → Q defined by φ(n) = n is a homomorphism,

since:

1. φ(1) = 1,

2. φ(n+Z m) = n+Q m.

3. φ(n ·Z m) = n ·Q m.
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Example 9.1.2. Fix an integer m which is larger than 1. For n ∈ Z, let n denote

the remainder of the division of n by m. That is:

n = mq + n̄, 0 ≤ n̄ < m

Recall that Zm = {0, 1, 2, . . . ,m} is a ring, with s+ t = s+Z t and s · t = s ·Z t,
for all s, t ∈ Zm.

Define a map φ : Z→ Zm as follows:

φ(n) = n, ∀n ∈ Z.

Then, φ is a homomorphism.

Proof.

1. φ(1) = 1 = 1,

2. φ(s+ t) = s+Z t = s+Z t = s+ t = φ(s) + φ(t).

3. φ(st) = s ·Z t = s ·Z t = s · t = φ(s)φ(t).

Example 9.1.3. For any ring R, define a map φ : Z→ R as follows:

φ(0) = 0;

For n ∈ N,

φ(n) = n · 1R := 1R + 1R + · · ·+ 1R︸ ︷︷ ︸
n times

;

φ(−n) = −n · 1R := n · (−1R) = (−1R) + (−1R) + · · ·+ (−1R)︸ ︷︷ ︸
n times

.

The map φ is a homomorphism.

Proof. Exercise.

Remark. In fact this is the only homomorphism from Z to R since we need to

have φ(1) = 1R and this implies that

φ(n) = n · φ(1) = n · 1R.
Example 9.1.4. Let R be a commutative ring. For each element r ∈ R, we may

define a map φr : R[x]→ R as follows:

φr

(
n∑

k=0

akx
k

)
=

n∑
k=0

akr
k

The map φr is a ring homomorphism.
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Proof. Shown in class.

Definition. If a ring homomorphism φ : R → R′ is a bijective map, we say that

φ is an isomorphism, and that R and R′ are isomorphic as rings.

Notation. If R and R′ are isomorphic, we write R ∼= R′.

Proposition 9.1.5. If φ : R → R′ is an isomorphism, then φ−1 : R′ → R is an
isomorphism.

Proof. Since φ is bijective, φ−1 is clearly bijective. It remains to show that φ−1 is

a homomorphism:

1. Since φ(1R) = 1R′ , we have φ−1(1R′) = φ−1(φ(1R)) = 1R.

2. For all b1, b2 ∈ R′, we have

φ−1(b1 + b2) = φ−1(φ(φ−1(b1)) + φ(φ−1(b2)))

= φ−1(φ(φ−1(b1) + φ−1(b2))) = φ−1(b1) + φ−1(b2)

3. For all b1, b2 ∈ R′, we have

φ−1(b1 · b2) = φ−1(φ(φ−1(b1)) · φ(φ−1(b2)))
= φ−1(φ(φ−1(b1) · φ−1(b2))) = φ−1(b1) · φ−1(b2)

This shows that φ−1 is a bijective homomorphism.

The key point here is that an isomorphism is more than simply a bijective

map, for it must preserve algebraic structure. For example, there is a bijective

map f : Z→ Q since both are countable, but they cannot be isomorphic as rings:

Suppose φ : Z → Q is an isomorphism. Then we must have φ(n) = nφ(1) = n
for any n ∈ Z. So φ cannot be surjective.

Theorem 9.1.6. If F is a field, then Frac(F ) ∼= F .

Proof. Define a map φ : F → Frac(F ) as follows:

φ(s) = [(s, 1)], ∀s ∈ F.

Exercise:

1. Show that φ is a homomorphism.

2. Show that φ is bijective.
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Let R be a commutative ring, let R[x, y] denote the ring of polynomials in x, y
with coefficients in R:

R[x, y] =

{
m∑
i=0

n∑
j=0

aijx
iyj : m,n ∈ Z≥0, aij ∈ R

}

Proposition 9.1.7. R[x, y] is isomorphic to R[x][y].

(Here, R[x][y] is the ring of polynomials in y with coefficients in the ring

R[x].)

Proof. We define a map φ : R[x, y]→ R[x][y] as follows:

φ

(
m∑
i=0

n∑
j=0

aijx
iyj

)
=

n∑
j=0

(
m∑
i=0

aijx
i

)
yj

Exercise: Show that φ is a homomorphism.

It remains to show that φ is one-to-one and onto.

For f =
∑m

i=0

∑n
j=0 aijx

iyj ∈ kerφ, we have:

φ(f) =
n∑

j=0

(
m∑
i=0

aijx
i

)
yj = 0R[x][y] =

∑
j=0

0R[x] · yj,

which implies that, for 0 ≤ j ≤ n, we have:

m∑
i=0

aijx
i = 0R[x], 0 ≤ i ≤ m.

Hence,

aij = 0R, for 0 ≤ i ≤ m, 0 ≤ j ≤ n,

which implies that kerφ = {0}. Hence, φ is one-to-one.

Given g =
∑n

j=0 pjy
j ∈ R[x][y], where pj ∈ R[x]. We want to find f ∈

R[x, y] such that φ(f) = g. Let m be the maximum degree of the pj’s. We may

write:

g =
n∑

j=0

(
m∑
i=0

ajix
i

)
yj,

where aji is the coefficient of xi in pj , with aji = 0 if i > deg pj . It is clear that:

φ

(
m∑
i=0

n∑
j=0

ajix
iyj

)
= g.

Hence, φ is onto.
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9.1.1 Subrings
Definition. Let R be a ring. A subset S of R is said to be a subring of R if it

is a ring under the addition +R and multiplication ×R associated with R, and its

additive and multiplicative identity elements 0, 1 are those of R.

To show that a subset S of a ring R is a subring, it suffices to show that:

• S contains the multiplicative identity of R.

• a− b ∈ S for any a, b ∈ S.

• S is closed under multiplication, i.e. a · b ∈ S for all a, b ∈ S.

Definition. The kernel of a ring homomorphism φ : R→ R′ is the set:

kerφ := {a ∈ R : φ(a) = 0}
The image of φ is the set:

imφ := {b ∈ R′ : b = φ(a) for some a ∈ R}.
Proposition 9.1.8. Let φ : R→ R′ be a ring homomorphism.

1. If S is a subring of R, then φ(S) is a subring of R′.

2. If S ′ is a subring of R′, then φ−1(S ′) is a subring of R.

Proof. Let us prove 1. and leave 2. as an exercise. So let S be a subring of R.

• Since 1 ∈ S, we have φ(1) = 1 ∈ φ(S).

• φ(a)− φ(b) = φ(a− b) ∈ φ(S) for any a, b ∈ S.

• φ(a) · φ(b) = φ(a · b) ∈ φ(S) for any a, b ∈ S.

We conclude that φ(S) is a subring of R′.

Corollary 9.1.9. For a ring homomorphism φ : R→ R′, imφ is a subring of R′.

Remark. Note that kerφ is not a subring unless R′ is the zero ring.

Proposition 9.1.10. A ring homomorphism φ : R → R′ is one-to-one if and only
if kerφ = {0}.
Proof. Suppose φ is one-to-one. For any a ∈ kerφ, we have φ(0) = φ(a) = 0,

which implies that a = 0 since φ is one-to-one. Hence, kerφ = {0}.
Suppose kerφ = {0}. If φ(a) = φ(a′), then 0 = φ(a) − φ(a′) = φ(a − a′),

which implies that a − a′ ∈ kerφ = {0}. So, a − a′ = 0, which implies that

a = a′. Hence, φ is one-to-one.
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Proposition 9.1.11. A subring of a field is an integral domain.

Proof. Let F be a field and S ⊂ F be a subring. Suppose we have a, b ∈ S
with a �= 0 such that ab = 0. We need to show that b = 0. Since F is a field,

a �= 0 implies that it is a unit, i.e. it has a multiplicative inverse a−1. So we have

0 = a−1(ab) = b.

For example, any subring of C is an integral domain. This produces a lot of

interesting examples which are important in number theory. For instance, the ring
of Gaussian integers:

Z[i] := {a+ bi : a, b ∈ Z} ⊂ C

is an integral domain. More generally, for any ξ ∈ C, the subset

Z[ξ] = {f(ξ) : f(x) ∈ Z[x]} ⊂ C

is an integral domain.
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